Asymptotic-preserving Godunov-type numerical schemes for hyperbolic systems with stiff and non-stiff relaxation terms
نویسندگان
چکیده
We devise a new-class of asymptotic-preserving Godunov-type numerical schemes for hyperbolic systems with stiff and non-stiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator-splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small and in-between values of ε and second, to make optional the choice of the numerical scheme in the asymptotic regime ε tends to zero. The latter property may be of particular interest to make easier and more efficient the coupling at a fixed spatial interface of two models involving very different values of ε.
منابع مشابه
Implicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations
We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...
متن کاملNumerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms
Hyperbolic systems often have relaxation terms that give them a partially conservative form and that lead to a long-time behavior governed by reduced systems that are parabolic in nature. In this article it is shown by asymptotic analysis and numerical examples that semidiscrete high resolution methods for hyperbolic conservation laws fail to capture this asymptotic behavior unless the small re...
متن کاملNumerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods
We present a higher order Godunov method for hyperbolic systems of conservation laws with stii, relaxing source terms. Our goal is to develop a Godunov method which produces higher order accurate solutions using time and space increments governed solely by the non-stii part of the system, i.e., without fully resolving the eeect of the stii source terms. We assume that the system satisses a cert...
متن کاملImplicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems with Relaxation
We consider implicit-explicit (IMEX) Runge Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stabilitypreserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge Kutta (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space...
متن کاملA Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics
We propose a low Mach number, Godunov-type finite volume scheme for the numerical solution of the compressible Euler equations of gas dynamics. The scheme combines Klein’s non-stiff/stiff decomposition of the fluxes (J. Comput. Phys. 121:213-237, 1995) with an explicit/implicit time discretization (Cordier et al., J. Comput. Phys. 231:56855704, 2012) for the split fluxes. This results in a scal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017